

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 178 (2005) 1221-1229

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Structures, magnetic, and thermal properties of Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, and Eu)

Hiroaki Nishimine, Makoto Wakeshima, Yukio Hinatsu*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 18 August 2004; received in revised form 7 October 2004; accepted 8 October 2004

Abstract

Ternary lanthanide–molybdenum oxides Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is $P2_12_12_1$. The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the *b*-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La₃MoO₇ shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd₃MoO₇ show a clear antiferromagnetic transition at 2.5 K. From the susceptibility measurements, both Pr₃MoO₇ and Sm₃MoO₇ show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln_3MoO_7 compound in the temperature range between 370 and 710 K. © 2004 Elsevier Inc. All rights reserved.

Keywords: Magnetic properties; Lanthanide; Molybdenum; Oxide; Magnetic susceptibility; Specific heat; Antiferromagnetic transition; Structural phase transition; Differential scanning calorimetry

1. Introduction

The solid state chemistry of mixed metal oxides containing both lanthanides and 4*d* or 5*d* transition metals has attracted a great deal of interest. In recent years, compounds of composition Ln_3MO_7 , where Ln is a lanthanide and *M* is the 4*d* or 5*d* transition metal, have been investigated by many researchers [1–23]. In 1979, Rossell et al. determined the crystal structures of Y₃TaO₇ and Y₂GdSbO₇ [1,2]. The structures are basically similar. One-third of the *Ln* cation are 8coordinated and lie in [001] rows which alternate with parallel rows of corner-linked MO_6 coordination octahedra within slabs parallel to [100]. The remaining *Ln* cations lie between these slabs in seven-fold coordination. A variety of the space groups such as *Pnma*, *Cmcm*, $P2_12_12_1$, and $C222_1$ have been proposed for the Ln_3MO_7 . For the Ln_3RuO_7 (Ln=La, Pr, Nd, Sm–Gd) [3,4,10–17], Ln_3IrO_7 (Ln=Pr, Nd, Sm, Eu) [6,7,21], and Ln_3ReO_7 (Ln=Pr, Nd, Sm–Tb) [8,19,23], *Cmcm* appears to provide a good description, while for Ln_3NbO_7 (Ln=La) [7] and Ln_3MoO_7 (Ln=La, Pr) [9,20], *Pnma* and $P2_12_12_1$ have been adopted, respectively.

As for the Mo compounds, Prevost-Czeskleba first reported that Ln_3MoO_7 (Ln=La, Pr, Nd, Sm, Eu) crystallized in an orthorhombic phase with space group *Cmcm* from their powder X-ray diffraction measurements [5]. Later, Greedan et al. [9] and Barrier and Gougen [20] prepared single crystals of Ln_3MoO_7 (Ln=La, Pr) and performed their single crystal X-ray diffraction measurements. Their experimental results show that these Ln_3MoO_7 compounds crystallize in the orthorhombic space group $P2_12_12_1$.

^{*}Corresponding author. Fax: +81 11 706 2702.

E-mail address: hinatsu@sci.hokudai.ac.jp (Y. Hinatsu).

^{0022-4596/\$ -} see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.10.013

Greedan et al. studied the electronic and thermal properties of La₃MoO₇ by magnetic susceptibility, electric resistivity, and neutron diffraction measurements [9]. The magnetic susceptibility was quite complex. The main feature was the existence of a broad maximum at 655 K, which was interpreted as due to intrachain spin correlations of the Mo⁵⁺ ions. Several other anomalies were observed at 483, 140, and 100 K. There was an indication from neutron diffraction data for the onset of long-range antiferromagnetic order below 100 K. Differential scanning calorimetry (DSC) data showed that the anomalies at 373 and 483 K may be due to the phase transitions. However, magnetic and thermal studies on other Ln_3MoO_7 compounds except for La₃MoO₇ have not been performed yet.

Compounds of composition Ln_3MO_7 have, in general, quasi-one-dimensional feature in their crystal structures. Therefore, we can expect to observe peculiar magnetic and electronic properties reflecting this low-dimensional feature. In the present study, we have prepared a series of Ln_3MoO_7 compounds (Ln=La, Pr, Nd, Sm, Eu). Through X-ray diffraction measurements, their crystal structures have been determined. The magnetic susceptibility and specific heat measurements have been performed from 1.8 K to room temperature.

2. Experimental

2.1. Sample preparation

As starting materials, Ln_2O_3 , MoO_2 , and MoO_3 were used. For the preparation of Ln = Pr compound, Pr_6O_{11} was used as a starting material. To obtain praseodymium sesquioxide Pr_2O_3 , the Pr_6O_{11} was reduced in a flowing H₂ atmosphere at 900 °C for a day. They were weighed in an appropriate metal ratio and were ground in an agate mortar. The mixtures were pressed into pellets and then sealed in an evacuated platinum tube. They were heated at 1200 °C for 12 h, and then cooled down to room temperature. After regrinding and repelleting, the same heating procedure was repeated again.

2.2. X-ray diffraction analysis

Powder X-ray diffraction (XRD) measurements were carried out in the region of $10^{\circ} \leq 2\theta \leq 120^{\circ}$ using CuK α radiation on a Rigaku MultiFlex diffractometer equipped with a curved graphite monochromator. The structures were refined with the Rietveld method. For La₃MoO₇, the XRD profiles were obtained in the temperature range from 300 to 500 K. The Rietveld analyses were carried out with the program RIETAN 2000 [24] using collected diffraction data.

2.3. Magnetic susceptibility measurements

The temperature-dependence of the magnetic susceptibility was measured in an applied field of 0.1 T over the temperature range of $1.8 \text{ K} \leq T \leq 300 \text{ K}$, using a SQUID magnetometer (Quantum Design, MPMS5S). The susceptibility measurements were performed either using zero field cooling (ZFC) and field cooling (FC) conditions. The former was measured upon heating the sample to 300 K under the applied magnetic field of 0.1 T after zero-field cooling to 1.8 K. The latter was measured upon cooling the sample from 300 to 1.8 Kat 0.1 T.

2.4. Specific heat measurements

Specific heat measurements were performed using a relaxation technique by a commercial heat capacity measuring system (Quantum Design, PPMS) in the temperature range of 1.8–300 K. The sintered sample in the form of a pellet was mounted on a thin alumina plate with Apiezon for better thermal contact.

2.5. Differential scanning calorimetry measurements

The DSC measurements were carried out under flowing Ar gas atmosphere over the temperature range of 300-800 K using DSC 200 (Seiko, Japan). The heating rate was 5 K/min.

3. Results and discussion

3.1. Preparation and crystal structure

We have successfully prepared a series of compounds Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu) in evacuated platinum tubes heated at 1200 °C for 12-24 h. Fig. 1 shows the powder X-ray diffraction profile for Nd_3MoO_7 measured at room temperature, as an example. The powder X-ray diffraction profiles for Ln_3MoO_7 (Ln = La, Pr) are quite similar to those reported earlier [9,20]. Their crystal structures have been elucidated and they are orthorhombic with space group $P2_12_12_1$ (No. 19). We have performed refinements of the crystal structures for other Ln_3MoO_7 (Ln = Nd, Sm, Eu) with the same space group $P2_12_12_1$. The lattice parameters and reliability factors R for Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu) are listed in Table 1. Table 2 lists the crystallographic data for Nd₃MoO₇, as a representative of Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu). The results of the Rietveld analysis show that Ln_3MoO_7 (Ln = Nd, Sm, Eu) are isomorphous with La₃MoO₇ and Pr₃MoO₇. Fig. 2 shows the crystal structure of Nd_3MoO_7 . It consists of slabs, parallel to the (a, b)plane, in which rows of corner-linked MoO₆ octahedra

Fig. 1. Powder X-ray diffraction profiles for Nd_3MoO_7 . The calculated and observed profiles are shown on the top solid line and cross markers, respectively. The vertical marks in the middle show positions calculated for Bragg reflections. The lower trace is a plot of the difference between calculated and observed intensities.

Table 1 Lattice parameters and reliability factors R for Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu)

Compounds	a (Å)	b (Å)	a (Å)	$R_{\rm wp}$	$R_{\rm I}$
La ₃ MoO ₇	7.599(2)	7.716(2)	11.101(2)	10.71	2.05
Pr ₃ MoO ₇	7.511(2)	7.638(2)	10.892(2)	10.04	2.32
Nd ₃ MoO ₇	7.509(2)	7.605(2)	10.818(2)	10.20	2.08
Sm ₃ MoO ₇	7.451(1)	7.540(1)	10.673(2)	10.58	2.20
Eu ₃ MoO ₇	7.439(2)	7.518(2)	10.623(3)	10.35	1.81

Note: Definition of reliability factors R_{wp} and R_I are given as follows: $R_{wp} = [\Sigma w(|F(o)| - |F(c)|)^2 / \Sigma w(|F(o)|^2]^{1/2}$ and $R_I = \Sigma |I_k(o) - I_k(c)| / \Sigma I_k(o)$.

Table 2 Crystallographic data for Nd₃MoO₇

Atom	Site	x	у	Ζ	$B({\rm \AA}^2)$
Space g	roup : P	2 ₁ 2 ₁ 2 ₁ 2 ₁ (No. 1	9)		
Nd(1)	4 <i>a</i>	0.9776(2)	0.0100(4)	0.7545(5)	0.52(5)
Nd(2)	4a	0.7058(4)	0.7545(6)	0.5339(2)	0.46(7)
Nd(3)	4a	0.6936(3)	0.7460(6)	-0.0173(2)	0.17(6)
Мо	4a	0.4968(4)	-0.0011(7)	0.7504(7)	0.20(5)
O(1)	4a	0.569(2)	0.764(4)	0.763(3)	0.9(1)
O(2)	4a	0.798(2)	0.957(4)	0.134(2)	0.9(1)
O(3)	4a	0.117(2)	0.051(4)	0.106(2)	0.9(1)
O(4)	4a	0.820(2)	0.975(4)	0.377(2)	0.9(1)
O(5)	4a	0.204(2)	0.033(4)	0.359(2)	0.9(1)
O(6)	4a	0.954(2)	0.742(5)	-0.112(2)	0.9(1)
O(7)	4 <i>a</i>	0.997(3)	0.752(6)	0.620(2)	0.9(1)
	0			0	. 3

a = 7.509(2) Å; b = 7.605(2) Å; c = 10.818(2) Å; V = 617.8(2) Å.

running parallel to the *b*-axis alternate with rows of edge-shared $Nd(1)O_8$ pseudo-cubes. These slabs are separated by Nd(2) and Nd(3) cations which both are seven-coordinated by oxygen atoms.

Fig. 2. The crystal structure of Nd₃MoO₇.

Fig. 3. Variation of lattice parameters for Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, and Eu) with the Ln^{3+} ionic radius in eight coordination.

Fig. 3 shows the variation of lattice parameters for Ln_3MoO_7 with the Ln^{3+} ionic radius in eight coordination. With increasing Ln^{3+} radius, the lattice parameters monotonically increase, which differs from the results for Ln_3IrO_7 (Ln = Pr, Nd, Sm, Eu) [21]. In those iridates, not a monotonical increase of lattice parameters with increasing Ln^{3+} radius has been found and a phase transition of Ln_3IrO_7 has been observed at 262–485 K, i.e., not all the Ln_3IrO_7 compounds have the space group *Cmcm* at room temperature.

3.2. Magnetic properties

We have performed measurements of the magnetic susceptibility and specific heat in the temperature range of 1.8 K < T < 400 K and 1.8 K < T < 300 K, respectively.

3.2.1. La₃MoO₇

Figs. 4(a) and (b) show the temperature dependences of the magnetic susceptibility and specific heat for La₃MoO₇, respectively. The variation of the magnetic susceptibility with temperature is complicated. Below 380 K, the divergence between the ZFC and FC susceptibility has been found and the decrease of the susceptibility has been observed when the temperature is decreased through 150 K. This magnetic behavior is quite similar to the magnetic susceptibility data reported by Greedan et al. [9]. However, no anomaly has been observed in the temperature dependence of its specific heat at the corresponding temperature. Greedan et al. also reported that no explanation for the anomaly was available from the neutron diffraction measurements, and that the magnetic behavior observed below 100 K was due to the long-range magnetic orderings of Mo ions [9]. The anomaly observed at 380 K in the magnetic susceptibility is due to a structural phase transition, as will be described later.

3.2.2. Pr₃MoO₇

Figs. 5(a) and (b) show the temperature dependence of the magnetic susceptibility and specific heat for Pr₃MoO₇ from 1.8 to 300 K. The inset figures show their detailed temperature dependence in the low temperature region. The divergence between the ZFC and FC magnetic susceptibility has been observed below 8K and the increment of the susceptibility with decreasing temperature becomes smaller when the temperature is decreased through this temperature. At the same temperature, this compound shows a broad peak in the specific heat vs. temperature curve (Fig. 5(b)). This behavior indicates that Pr₃MoO₇ has a Schottky-type anomaly [25]. Since the site symmetry of the Pr ion is low in this compound, the ground state of the Pr^{3+} ion should be singlet. Due to a small energy difference between this singlet ground state and the excited state, the Schottky-type specific heat anomaly has been observed [25].

A linear relationship has been observed in the temperature dependence of the inverse magnetic susceptibility between 300 and 400 K. The Curie–Weiss fitting gives the Curie constant (*C*) and Weiss constant (θ) to be 5.15 (2) emu K/mol and -79 (1) K, respectively. This Curie constant means the effective magnetic moment of Pr₃MoO₇ to be 6.42 $\mu_{\rm B}$. Three Pr³⁺ ions and one Mo⁵⁺ ion contribute to the paramagnetism of this compound. Since the theoretical effective magnetic moments of Pr³⁺ and Mo⁵⁺ ions are 3.58 and 0.87 $\mu_{\rm B}$,

Fig. 4. (a) Temperature dependence of the magnetic susceptibility for La_3MoO_7 . (b) Temperature dependence of the specific heat for La_3MoO_7 . The inset shows its detailed temperature dependence below 20 K.

respectively, the expected effective magnetic moment for Pr_3MoO_7 is estimated to be 6.26 μ_B . The experimental value agrees with this estimated moment.

3.2.3. Nd₃MoO₇

Fig. 6(a) shows the detailed temperature dependence of the susceptibility for Nd₃MoO₇ below 15 K. It shows a sharp peak at 2.5 K, and when the temperature is furthermore decreased through this temperature, the divergence between the ZFC and FC susceptibilities has been observed. This magnetic behavior is characteristic for the canted antiferromagnetic substance. A λ -type

Fig. 5. (a) Temperature dependence of magnetic susceptibility for Pr_3MoO_7 . The inset shows its detailed temperature dependence below 10 K. (b) Temperature dependence of the specific heat for Pr_3MoO_7 . The inset shows its detailed temperature dependence in low temperature region.

specific heat anomaly has been observed at the same temperature.

We will evaluate the magnetic entropy change due to the antiferromagnetic ordering from the data of the specific heat measurements. As shown in Fig. 4(b), the specific heat for La₃MoO₇ shows no magnetic anomaly down to 1.8 K. If we assume that the electronic and lattice contributions to the specific heat are equal between La₃MoO₇ and Nd₃MoO₇, the magnetic specific heat for Nd₃MoO₇ is obtained by subtracting the

Fig. 6. (a) Temperature dependences of the magnetic susceptibility and specific heat for Nd₃MoO₇ below 15 K. (b) The magnetic specific heat (C_{mag}) and magnetic entropy (S_{mag}) against temperature for Nd₃MoO₇.

specific heat of La₃MoO₇ from that of Nd₃MoO₇. From its temperature dependence, the magnetic entropy change associated with the Nd³⁺ antiferromagnetic transition is calculated as shown in Fig. 6(b). It is saturated around 10 K and the magnetic entropy obtained experimentally is about 17.0 J/mol K, which is very close to $3R \ln W = 3R \ln 2 = 17.3$ J/mol K, where *R* and *W* are a molar gas constant and a degree of degeneracy of the ground state, respectively. This result shows that the degeneracy of the ground state should be doublet. Since the low symmetry of the oxygen-coordination around the Nd³⁺ site distorts its crystal electric field, it is expected that the ground state of Nd³⁺

Fig. 7. (a) Temperature dependences of the magnetic susceptibility and specific heat for Sm_3MoO_7 below 15 K. (b) The magnetic specific heat (C_{mag}) and magnetic entropy (S_{mag}) against temperature for Sm_3MoO_7 .

ion should be a Kramers' doublet. That is, the experimental results accords with this expectation.

The Curie–Weiss relationship has been found in the temperature range of 300 K < T < 400 K. The derived fitting constant are C = 5.22(1) emu K/mol and $\theta = -57.4(8) \text{ K}$. This Curie constant gives the effective magnetic moment of Nd₃MoO₇ to be $6.46 \mu_{\text{B}}$. Three Nd³⁺ ions and one Mo⁵⁺ ion contribute to the paramagnetism of this compound. Since the theoretical effective magnetic moments of Nd³⁺ and Mo⁵⁺ ions are 3.62 and $0.87 \mu_{\text{B}}$, respectively, the expected effective

Fig. 8. (a) Temperature dependence of the magnetic susceptibility for Eu_3MoO_7 . (b) Temperature dependence of the specific heat for Eu_3MoO_7 at low temperatures.

magnetic moment for Nd_3MoO_7 is estimated to be 6.33 μ_B . The effective magnetic moment obtained from experiment agrees with this estimated value.

3.2.4. Sm₃MoO₇

Fig. 7(a) shows the detailed temperature dependences of the magnetic susceptibility and the specific heat for

Fig. 9. DSC data for Ln₃MoO₇ (Ln = La, Pr, Nd, Sm, and Eu) during heating in the temperature range of 350-800 K.

Sm₃MoO₇ below 15 K. Measurements of the magnetic susceptibility of Sm₃MoO₇ have been performed in the temperature range of 1.8 K < T < 400 K. No magnetic anomaly has been observed in the high temperature region. A small magnetic anomaly has been found at 2.5 K, but the susceptibility increases with decreasing temperature below this temperature (Fig. 7(a)). A corresponding anomaly has been clearly observed in the specific heat vs. temperature curve. We have performed the specific heat measurements down to 0.4 K using a ³He option for the PPMS equipment. In addition to the anomaly observed at 2.5 K, another λ -type anomaly has been found at 0.8 K (see lower figure of Fig. 7(a)).

In a similar way as the case for Nd₃MoO₇, the magnetic entropy change due to the magnetic transition observed in the Sm₃MoO₇ has been estimated by subtracting the specific heat of La₃MoO₇ from that of Sm₃MoO₇. The results are shown in Fig. 7(b), and the entropy change is estimated to be 15.34 J/mol K, which is close to $3R \ln 2 = 17.29$ J/mol K. This experimental result indicates that the degeneracy of the ground state should be doublet, which accords with the expectation. Low symmetry of the oxygen-coordination around the Sm³⁺ site distorts its crystal electric field and the ground state of the Sm³⁺ ion should be a Kramers' doublet.

In the crystal structure of Sm₃MoO₇, there are two types of oxygen-coordination around Sm sites, one of which is the pseudo-cubic 8-fold coordination and the other is the pentagonal bipyramidal 7-fold coordination. From the results of the specific heat measurements, the existence of the two λ -type anomalies indicates that two kinds of Sm magnetic moments in different coordination environments independently order. At 2.5 K one kind of Sm magnetic moments order antiferromagnetically, and the other kind of Sm magnetic moments are in the paramagnetic state. Therefore, the susceptibility of Sm₃MoO₇ still increases with decreasing temperature below 2.5 K (Fig. 7(a), upper figure).

3.2.5. Eu₃MoO₇

Fig. 8(a) shows the temperature dependence of the magnetic susceptibility for Eu₃MoO₇ in the temperature range of 1.8 K < T < 400 K. No magnetic anomaly has been observed. Except at very low temperatures, the shape of this susceptibility vs. temperature curve is characteristic of Van Vleck paramagnetism, with a constant susceptibility for the lower temperature range and a decreasing susceptibility with increasing temperature for T > 50 K. At very low temperatures (T < 10 K), the magnetic susceptibilities suddenly increase with decreasing temperature. This magnetic behavior may be due to the properties of paramagnetic Mo⁵⁺ ions in Eu₃MoO₇. Fig. 8(b) depicts the specific heat vs. temperature curve for Eu₃MoO₇ below 15 K, showing no anomaly even in this low temperature range.

3.3. Structural phase transition

In order to ascertain the existence of structural phase transition in these Ln_3MoO_7 , we have performed the DSC measurements for all compounds. Fig. 9 shows the DSC data for Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, and Eu) in the temperature range of 350–800 K. For any Ln_3MoO_7 compound, two endothermic peaks in the DSC data were observed during heating, for example, at 371 and 484 K for La₃MoO₇, at 381 and 522 K for Pr₃MoO₇, and at 428 and 579 K for Nd₃MoO₇. Both the phase transition temperatures become higher from Ln = La to Eu.

Fig. 10 shows the temperature dependence of the lattice parameters for La₃MoO₇ in the temperature range of 300 < T < 500 K. The lattice parameters were refined with space group $P2_12_12_1$ for any temperature. With increasing temperature, the lattice parameter *c* increases monotonically, while the drastic changes have been observed at ca. 350 and 450 K for the parameter *a*, and at ca. 450 K for the parameter *b*. These temperatures are corresponding to the temperatures at which DSC anomalies have been observed (see Fig. 9(a)), i.e., the anomalies observed in the DSC measurements are due to the crystal phase transition.

Fig. 10. Temperature dependence of lattice parameters for La₃MoO₇.

4. Summary

Ternary lanthanide–molybdenum oxides Ln_3MoO_7 (Ln = La, Pr, Nd, Sm, Eu) have been prepared and their magnetic properties have been characterized through magnetic susceptibility and specific heat measurements. La_3MoO_7 shows complex magnetic behavior at 150 and 380 K. Nd₃MoO₇ shows a clear antiferromagnetic transition at 2.5 K. Pr₃MoO₇ and Sm₃MoO₇ indicate the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The DSC measurements indicate that two phase-transitions occur for all Ln_3MoO_7 compounds in the temperature range between 370 and 710 K.

References

- [1] J.G. Allpress, H.J. Rossell, J. Solid State Chem. 27 (1979) 105.
- [2] H.J. Rossell, J. Solid State Chem. 27 (1979) 115.
- [3] F.P.F. van Berkel, D.J.W. IJdo, Mater. Res. Bull. 21 (1986) 1103.
- [4] W.A. Groen, F.P.F. van Berkel, D.J.W. IJdo, Acta Crystallogr. Sec. C 43 (1986) 2262.
- [5] H. Prevost-Czeskleba, J. Less-Common Metals 127 (1987) 117.
- [6] J.F. Vente, D.J.W. IJdo, Mater. Res. Bull. 26 (1991) 1255.
- [7] A. Kahn-Harari, L. Mazerrolles, D. Michel, F. Robert, J. Solid State Chem. 116 (1995) 103.
- [8] G. Wltschek, H. Paulus, I. Svoboda, H. Ehrenberg, H. Fuess, J.Solid State Chem. 125 (1996) 1.

- [9] J.E. Greedan, N.P. Raju, A. Wegner, P. Gougeon, J. Padiou, J. Solid State Chem. 129 (1997) 320.
- [10] P. Khalifah, R.W. Erwin, J.W. Lynn, Q. Huang, B. Batlogg, R.J. Cava, Phys. Rev. B 60 (1999) 9573.
- [11] P. Khalifah, Q. Huang, J.W. Lynn, R.W. Erwin, R.J. Cava, Mater. Res. Bull. 35 (2000) 1.
- [12] F. Wiss, N.P. Raju, A.S. Wills, J.E. Greedan, Inter. J. Inorg. Mater. 2 (2000) 53.
- [13] B.P. Bontchev, A.J. Jacobson, M.M. Gospodinov, V. Skumryev, V.N. Popov, B. Lorenz, R.L. Meng, A.P. Litvinchuk, M.N. Iliev, Phys. Rev. B 62 (2000) 12235.
- [14] D. Harada, Y. Hinatsu, J. Solid State Chem. 158 (2001) 245.
- [15] D. Harada, Y. Hinatsu, J. Phys.: Condens. Matter 13 (2001) 10825.
- [16] D. Harada, Y. Hinatsu, J. Solid State Chem. 164 (2002) 163.
- [17] R. Lam, F. Wiss, J.E. Greedan, J. Solid State Chem. 167 (2002) 182.
- [18] J.R. Plaisier, R.D. Drost, P.J.W. IJdo, J. Solid State Chem. 169 (2002) 189.
- [19] R. Lam, T. Langet, J.E. Greedan, J. Solid State Chem. 171 (2003) 317.
- [20] N. Barrier, P. Gougeon, Acta Crystallogr. E 59 (2003) i22.
- [21] H. Nishimine, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 177 (2004) 739.
- [22] M. Wakeshima, H. Nishimine, Y. Hinatsu, J. Phys.: Condens. Matter 16 (2004) 4103.
- [23] Y. Hinatau, M. Wakeshima, N. Kawabuchi, N. Taira, J. Alloys Comp. 374 (2004) 79.
- [24] F. Izumi, T. Ikeda, Mater. Sci. Forum 198 (2000) 321.
- [25] R.L. Carlin, Magnetochemistry, Springer, New York, 1986.